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Abstract
We investigate a new strategy for incoherent eavesdropping in Ekert’s
entanglement-based quantum key distribution protocol. We show that under
certain assumptions of symmetry the effectiveness of this strategy reduces to
that of the original single-qubit protocol of Bennett and Brassard.

PACS numbers: 03.67.Dd, 03.65.Ta, 03.67.−a

Quantum key distribution (QKD) employs quantum features such as the uncertainty principle
and quantum correlations to provide for unconditionally secure communications [1]. In
classical cryptography no mechanism is known for unconditionally secure key distribution.
The importance of QKD protocols within cryptography is paramount as they allow for the
practical implementation of unconditionally secure cryptographic algorithms such as the one-
time pad [2].

A quantum cryptographic system can be thought to be constructed of two main parts:
firstly the underlying quantum key distribution protocol securely establishes a common key
between Alice and Bob, and secondly the message is simply encrypted with the established
key and transmitted. Theoretical models for quantum key distribution protocols based on the
uncertainty principle have been analysed by Bennett and Brassard (BB84) [3] and models
based on quantum correlations have been proposed by Ekert (E91) [4]. A modified version
of E91 that is closer to BB84 has been proposed by Bennett, Brassard and Mermin (BBM92)
[5].

Eavesdropping can be considered as the interception of a transmission between Alice
and Bob by an eavesdropper (Eve) and then the application of an appropriate measurement
to extract information. Regardless of the difficulty of interception of the message, in
principle any classical channel can always be passively monitored, without the legitimate
users being aware that any eavesdropping has taken place. This is not so for quantum
channels. Any measurement disturbs the transmitted state and hence can be detected by Alice
and Bob. This leads to a trade-off between the amount of information that Eve can acquire
about the transmission and the degree to which she disturbs it and hence can be detected
[6].
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In this paper we present an incoherent eavesdropping strategy for BBM92. The BBM92
protocol can be presented in five main stages:

• Entangled photons are distributed to Alice and Bob who measure them randomly choosing
between two fixed measurement bases. This state is such that in the absence of noise or
eavesdropping Alice and Bob’s measurement results are the same if they choose the same
basis.

• Alice and Bob communicate classically their choice of basis for all pairs and discard all
measurement results where different bases were used.

• A subset of the remainingmeasurement results is publicly comparedand used to determine
the error rate (i.e. where Alice’s and Bob’s outcomes do not coincide). This error rate is
assumed to be due to Eve.

• Finally, if the error rate is below a certain acceptable threshold, then the remaining
undisclosed outcomes constitute the sifted keys. Otherwise, the outcomes are discarded
and the whole process is repeated.

• The sifted keys may be partially corrupted and compromised. Alice and Bob perform
error correction to reconcile the discrepancies between their sifted keys. The privacy
amplification step returns from this partially compromised reconciled key a shorter string
of bits called private key. This step should be devised so that Eve’s knowledge about the
private key is arbitrarily small.

The classical communications between Alice and Bob in the above protocol are assumed to
be authenticated, i.e. Eve is able to read any classical message exchanged between Alice and
Bob, but cannot modify it without being detected (if such modification is detected then the
protocol is terminated).

In the following part of the paper, we consider the situation in which Alice and Bob use
an interactive error-correction scheme that does not reveal any information about Alice’s and
Bob’s sifted keys, except possibly the positions of the discrepancies. Such a correction can be
obtained for instance by using the Cascade protocol proposed by Brassard and Salvail [7], in
which the parity bits are encrypted using the one-time pad.

In our eavesdropping strategy we assume that Eve prepares both photons of the entangled
pair before they are transmitted to Alice and Bob. We do not analyse the most general attack
of this type, but instead focus on a simpler symmetric attack.

We adopt a conservative view in which Eve prepares a pair of photons in an arbitrary
state, possibly entangled with other quantum systems. These auxiliary quantum systems are
known as a probe. Without loss of generality [8], the initial joint state of the photon pair and
the probe can be assumed to be a pure state|ψ〉 of the following form:

|ψ〉 =
∑

α,β∈{0,1}
|Eα,β〉|α〉+|β〉+ (1)

where{|0〉+, |1〉+} is a basis for the polarization state of a single photon. The states|α〉+ and
|β〉+ refer to Alice and Bob’s respective photon states. The kets for Eve’s probe|Eα,β〉 are
not necessarily normalized or orthogonal. The only condition on these vectors is the overall
normalization of|ψ〉, leading to∑

α,β∈{0,1}
〈Eα,β |Eα,β〉 = 1. (2)

If we assume that Alice controls the EPR source, then the security of the above BBM92
scheme is equivalent to the security of BB84 protocol [5]. This is because Alice first generates
an entangled pair locally, keeps one photon and sends the other to Bob. Therefore only one
photon can be intercepted and measured by Eve which is thus analogous to BB84.
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Notice that if Eve is limited only to eavesdropping on the quantum channel between the
source and Bob, her eavesdropping can be described without loss of generality as an unitary
interaction between Bob’s photon and Eve’s probe:

|F 〉|0〉+ 
→ |F00〉|0〉+ + |F01〉|1〉+ (3)

|F 〉|1〉+ 
→ |F10〉|0〉+ + |F11〉|1〉+ (4)

where|F 〉 is the initial state of Eve’s probe, and the|Fα,β〉 are again not necessarily normalized
or orthogonal, but obey the unitarity conditions:

〈F00|F00〉 + 〈F01|F01〉 = 1 (5)

〈F10|F10〉 + 〈F11|F11〉 = 1 (6)

〈F00|F10〉 + 〈F01|F11〉 = 0. (7)

The resulting global state of the pair and the probe is

|ψ ′〉 =
∑

α,β∈{0,1}

|Fα,β〉√
2

|α〉+|β〉+. (8)

However, because of the unitarity conditions (equations (5)–(7)), the global state obtained
by Eve when she is only accessing one of the photons is not as general as the state she can obtain
when she can access both as in equation (1). Therefore this proves that the eavesdropping
strategy in which Eve controls the source (i.e. both photons) is potentially stronger than the
strategy in which she is allowed to eavesdrop on only one photon.

We now turn our attention to a symmetric subclass of incoherent attacks against BBM92 in
which Eve controls the source. We derive the probability that Eve guesses Alice’s bit correctly
as a function of the error probability that Alice and Bob can estimate from comparing a fraction
of the key bits they obtain.

Let {|0〉+, |1〉+} be a basis for the polarization state of a single photon. We define its
conjugate basis{|0〉×, |1〉×} by |0〉× = (|0〉+ + |1〉+)/

√
2 and|1〉× = (|0〉+ − |1〉+)/

√
2. For

anyb ∈ {+,×} we use the shorthand notation|αβ〉b for the state of a pair of photons in which
Alice’s photon is in state|α〉b and Bob’s photon in the state|β〉b. We define the Bell basis
{|0〉, |1〉, |2〉, |3〉} for the pair of photons Alice and Bob receive by

|0〉 = (|00〉+ + |11〉+)/
√

2 |1〉 = (|00〉+ − |11〉+)/
√

2

|2〉 = (|01〉+ + |10〉+)/
√

2 |3〉 = (|01〉+ − |10〉+)/
√

2.

In the most general incoherent attack, Eve prepares two single photons and a probe in any pure
state|ψ〉 = ∑3

c=0 |Ec〉|c〉, where for simplicity we use the Bell basis. The kets for the probe,
|Ec〉 as previously mentioned are not necessarily normalized or orthogonal, but nevertheless
have to obey the overall normalization relation

∑3
c=0〈Ec|Ec〉 = 1. It is straightforward to

check that

|ψ〉 = |E0〉 + |E1〉√
2

|00〉+ +
|E2〉 + |E3〉√

2
|01〉+

+
|E2〉 − |E3〉√

2
|10〉+ +

|E0〉 − |E1〉√
2

|11〉+ (9)

= |E0〉 + |E2〉√
2

|00〉× +
|E1〉 − |E3〉√

2
|01〉×

+
|E1〉 + |E3〉√

2
|10〉× +

|E0〉 − |E2〉√
2

|11〉×. (10)
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Eve sends each of the photons to Alice and Bob. After public communication between
Alice and Bob, Eve then performs any measurement on her probe. We say that an incoherent
attack is furthermoresymmetric if and only if the kets|Ec〉 are orthogonal.

The probability that Alice and Bob fail to share the same bit value given that they have
chosen the same basisb ∈ {+,×} reads

εb = Tr [1 ⊗ (|01〉bb〈01| + |10〉bb〈10|)|ψ〉〈ψ|] (11)

=
{
z + t if b = +
y + t if b = × (12)

where the identity operator acts on the Hilbert space of the probe and where we have used the
shorthand notationx = 〈E0|E0〉, y = 〈E1|E1〉, z = 〈E2|E2〉 andt = 〈E3|E3〉.

We assumed that, after public discussion between Alice and Bob, Eve is aware of their
chosen basis, and whether or not their measurements yielded the same bit value. From these
data Eve’s objective is to guess Alice’s bit valueα. Assuming that Alice and Bob chose the
basisb = + and that their measurement returned thesame bit value, we see from equation (9)
that Eve has to find out whether her probe is in the state|E0〉+|E1〉√

x+y , corresponding toα = 0 or in

the state|E0〉−|E1〉√
x+y corresponding toα = 1. Given a quantum system that is equally likely to be

in either state|η〉 or |χ〉, it is known that the optimal probability of guessing this state correctly
is Pc = 1

2 + 1
2

√
1 − |〈η|χ〉|2 [9]. In our case, Eve’s probability of guessing correctly is

Pc|share,b=+ = 1

2
+

1

2

√
1 −

(
x − y

x + y

)2

. (13)

If Alice and Bob chose the basisb = +, but that their measurements returneddifferent
bit values, Eve has to find out whether her probe is in the state|E2〉+|E3〉√

y+z or |E2〉−|E3〉√
y+z . Eve’s

probability of guessing correctly is now

Pc|not share,b=+ = 1

2
+

1

2

√
1 −

(
z− t

z + t

)2

. (14)

Similar calculations on the conjugate basis give

Pc|share,b=× = 1

2
+

1

2

√
1 −

(
x − z

x + z

)2

(15)

and

Pc|not share,b=× = 1

2
+

1

2

√
1 −

(
y − t

y + t

)2

. (16)

Given that the choice of the basisb is uniformly distributed, the marginal probability that
Eve guesses Alice’s bit correctly is

Pc = 1 − ε+

2
Pc|share,b=+ +

ε+

2
Pc|not share,b=+ +

1 − ε×
2

Pc|share,b=× +
ε×
2
Pc|not share,b=× (17)

= 1

2
+

1

2
(
√
xy +

√
zt +

√
xz +

√
yt) (18)

= 1

2
+

1

2
(
√

1 − ε+ − x +
√

1 − ε× − x)(
√
x +

√
x + ε+ + ε× − 1) (19)

where we have used the normalization conditionx + y + z + t = 1. Sincey, z and t are
non-negative numbers, the domain forx is [1 − ε+ − ε×,1 − max(ε+, ε×)].
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Now given the average error probability ¯ε = ε++ε×
2 , the above probability of a correct

guess is maximal whenε+ = ε× = ε̄. In other words, given the average error probability, the
eavesdropping strategy that maximizes the average probability of correct guess is the one for
which the error probability is independent of the choice of basis. The resulting probability of
correct guess

Pc = 1
2 +

√
1 − ε̄ − x(

√
x +

√
2ε̄ + x − 1) (20)

reaches its maximum forx = 1 − 2ε̄ + ε̄2 at which point

Pc = 1
2 +

√
ε̄(1 − ε̄). (21)

The above formula is identical to the formula obtained by Cirac and Gisin [10] in their
study of the security of BB84 against a class of incoherent attacks with similar conditions
for symmetry (see figure 1). The fact that our incoherent symmetric eavesdropping strategy
has effectively the same power as the BB84 incoherent symmetric eavesdropping strategy is
surprising. This is particularly so given that the maximally entangled state|00〉+ + |11〉+ has
the following interesting property:

A⊗ I (|00〉+ + |11〉+) = I ⊗ AT (|00〉+ + |11〉+) (22)

whereA is any operator. This implies that any operation on one qubit can be executed remotely
by performing the transpose of that operation on the other qubit, provided that the state of the
two qubits is maximally entangled. In spite of this, there is no operatorC such that

A⊗ B(|00〉+ + |11〉+) = I ⊗ C(|00〉+ + |11〉+) (23)

which is why the two-qubit attack is strictly more general than the single-qubit attack. This is,
of course, because the operation represented byB will in general result in a non-maximally
entangled state which no longer has the property of remote execution of operations.

1

0.9

0.8

0.7

0.6

0.5
0 0.1 0.2 0.3 0.4 0.5

P c

Figure 1. Efficiency of the symmetric two qubit attack. The probability of a correct guess is
plotted against the error rate induced by eavesdropping.

Note that the above result can also be expressed as a trade-off between the error rate and
the mutual information obtained by Eve about the nature of the state communicated by Alice
to Bob. In this case we have a situation equivalent to a binary symmetric channel so that the
mutual information is the capacity of that channel and is given by [2]

I = 1 + Pc logPc + (1 − Pc) log(1 − Pc). (24)

As before, the greater the mutual information gained by Eve the greater the (detectable) error
rate induced in the communication.
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In this paper we have analysed a symmetric incoherent eavesdropping strategy against the
BBM92 quantum key distribution protocol. We have assumed that Eve controls preparation of
the entangled photons. In spite of this, we have found that there is no benefit for the purpose
of eavesdropping when compared to symmetric incoherent eavesdropping in BB84. We hope
that this stimulates further investigation into entanglement-based quantum cryptography.
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